论文标题

超新星搜索ZTF DR3中的主动学习

Supernova search with active learning in ZTF DR3

论文作者

Pruzhinskaya, Maria V., Ishida, Emille E. O., Novinskaya, Alexandra K., Russeil, Etienne, Volnova, Alina A., Malanchev, Konstantin L., Kornilov, Matwey V., Aleo, Patrick D., Korolev, Vladimir S., Krushinsky, Vadim V., Sreejith, Sreevarsha, Gangler, Emmanuel

论文摘要

在大规模天文学调查的广泛数据范围内,我们提供了完整的SNAD自适应学习管道的第一个结果。这项工作的主要目标是探索适用于大数据集的自适应学习技术的潜力。我们的SNAD团队使用主动异常发现(AAD)作为工具,以在Zwicky Transient设施(ZTF)调查的前9.4个月中搜索新的超新星(SN)候选者,即2018年3月17日至12月31日之间(58194 <mjd <58483)。我们在高银河纬度上分析了70个ZTF字段,并在视觉上检查了2100个异常值。这导致发现了104个类似SN的对象,其中57个是第一次报告给瞬态名称服务器,并且在其他目录中提到了47个对象,或者在其他目录中提到了47个服务器,既为sne sne sne sne sne sne sne sne sne sne sne sne sne sne sne sne。我们在视觉上检查了非彩色瞬变的多色光曲线,并具有不同的超新星模型的配件,以将其分配给可能的光度法类别:IA,IB/C,IIP,IIP,IIL或IIN。此外,我们还确定了良好的超浮肿SN候选物的未报告的慢速瞬态,以及其他一些非毒物体,例如红矮星和活跃的银河核。除了确认AAD策略基础的人机整合的有效性外,我们的结果还阐明了当前可用管道中的潜在泄漏。这些发现可以帮助避免在未来的大规模天文学调查中造成类似的损失。此外,该算法可以直接搜索任何类型的数据,并基于专家设定的异常定义。

We provide the first results from the complete SNAD adaptive learning pipeline in the context of a broad scope of data from large-scale astronomical surveys. The main goal of this work is to explore the potential of adaptive learning techniques in application to big data sets. Our SNAD team used Active Anomaly Discovery (AAD) as a tool to search for new supernova (SN) candidates in the photometric data from the first 9.4 months of the Zwicky Transient Facility (ZTF) survey, namely, between March 17 and December 31 2018 (58194 < MJD < 58483). We analysed 70 ZTF fields at a high galactic latitude and visually inspected 2100 outliers. This resulted in 104 SN-like objects being found, 57 of which were reported to the Transient Name Server for the first time and with 47 having previously been mentioned in other catalogues, either as SNe with known types or as SN candidates. We visually inspected the multi-colour light curves of the non-catalogued transients and performed fittings with different supernova models to assign it to a probable photometric class: Ia, Ib/c, IIP, IIL, or IIn. Moreover, we also identified unreported slow-evolving transients that are good superluminous SN candidates, along with a few other non-catalogued objects, such as red dwarf flares and active galactic nuclei. Beyond confirming the effectiveness of human-machine integration underlying the AAD strategy, our results shed light on potential leaks in currently available pipelines. These findings can help avoid similar losses in future large-scale astronomical surveys. Furthermore, the algorithm enables direct searches of any type of data and based on any definition of an anomaly set by the expert.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源