论文标题
对基于卫星的QKD的极化校正没有主动反馈
Polarization correction towards satellite-based QKD without an active feedback
论文作者
论文摘要
量子密钥分布(QKD)是一种加密协议,可以使两个方共享一个安全的键字符串,该键可以在一次性pad密码系统中使用。在实施QKD方案的长途光子实施方面,人们一直在持续兴趣。但是,这项工作在许多方面都具有挑战性。特别是,主要挑战之一是单光子的极化程度在通过光纤传播或大气湍流时受到影响。从传统上讲,采用积极的反馈机制来实现实时极化跟踪。在这项工作中,我们提出了一种替代方法,我们首先执行状态断层扫描以重建输出密度矩阵。然后,我们评估BOB末端的最佳测量库,该测量库导致双方测量结果中最大的(反)相关性。作为原则证明,我们实施了一个LAB内BBM92协议(使用量子纠缠作为资源的QKD协议的特定变体)来体现我们技术的性能。我们通过$ \ketψ_1= 1/\ sqrt {2} \,(\ ket {hv}+\ ket {vh})$ state and Concorence and Cromence and Cromence and Cromence and Cromence and Comperence。通过考虑代表性的1 NS巧合窗口跨度,我们能够实现$ \%$ $ \%$的量子位率率(QBER),而关键率为$ \ 35 $ kbps。协议性能与通过光纤局部极化旋转无关。我们还开发了一种算法方法,以优化关键利率和QBER之间的权衡。我们的方法消除了对主动极化跟踪的需求。我们的方法还适用于使用部分混合和非最大值纠缠状态的基于纠缠的QKD演示,并扩展到光纤通道上的单光子实现。
Quantum key distribution (QKD) is a cryptographic protocol to enable two parties to share a secure key string, which can be used in one-time pad cryptosystem. There has been an ongoing surge of interest in implementing long-haul photonic-implementation of QKD protocols. However, the endeavour is challenging in many aspects. In particular, one of the major challenges is the polarization degree of freedom of single-photons getting affected while transmission through optical fibres, or atmospheric turbulence. Conventionally, an active feedback-based mechanism is employed to achieve real-time polarization tracking. In this work, we propose an alternative approach where we first perform a state tomography to reconstruct the output density matrix. We then evaluate the optimal measurement bases at Bob's end that leads to the maximum (anti-)correlation in the measurement outcomes of both parties. As a proof-of-principle demonstration, we implement an in-lab BBM92 protocol -- a particular variant of a QKD protocol using quantum entanglement as a resource -- to exemplify the performance of our technique. We experimentally generate polarization-entangled photon pairs having $94\%$ fidelity with $\ketψ_1 = 1/\sqrt{2}\,(\ket{HV}+\ket{VH})$ state and a concurrence of $0.92$. By considering a representative 1 ns coincidence window span, we are able to achieve a quantum-bit-error-rate (QBER) of $\approx 5\%$, and a key rate of $\approx 35$ Kbps. The protocol performance is independent of local polarization rotations through optical fibres. We also develop an algorithmic approach to optimize the trade-off between the key rate and QBER. Our approach obviates the need for active polarization tracking. Our method is also applicable to entanglement-based QKD demonstrations using partially mixed as well as non-maximally entangled states, and extends to single-photon implementations over fibre channels.