论文标题

使用深度学习和EO进行日常高分辨率淹没观察

Towards Daily High-resolution Inundation Observations using Deep Learning and EO

论文作者

Dasgupta, Antara, Hybbeneth, Lasse, Waske, Björn

论文摘要

卫星遥感为概要洪水监测提供了一种具有成本效益的解决方案,卫星衍生的洪水图为传统上使用的数值洪水淹没模型提供了一种计算有效的替代方法。尽管卫星碰巧涵盖了正在进行的洪水事件时确实提供及时的淹没信息,但它们受其时空分辨率的限制,因为它们在各种尺度上动态监测洪水演变的能力。不断改善对新卫星数据源的访问以及大数据处理功能,就此问题的数据驱动解决方案而言,已经解锁了前所未有的可能性。具体而言,来自卫星的数据融合,例如哥白尼前哨,它们具有很高的空间和低时间分辨率,以及来自NASA SMAP和GPM任务的数据,这些数据的空间较低但时间较高,可能会导致每日尺度上的高分辨率洪水淹没。在这里,使用Sentinel-1合成孔径雷达和各种水文,地形和基于土地利用的预测因子衍生出的洪水淹没图训练了卷积神经网络,以预测洪水泛滥的高分辨率概率图。使用Sentinel-1和Sentinel-2衍生的洪水面具,评估了UNET和SEGNET模型体系结构的性能,分别具有95%的信心间隔。精确回忆曲线(PR-AUC)曲线下的面积(AUC)被用作主要评估度量,这是因为二进制洪水映射问题中类固有的不平衡性质,最佳模型的PR-AUC为0.85。

Satellite remote sensing presents a cost-effective solution for synoptic flood monitoring, and satellite-derived flood maps provide a computationally efficient alternative to numerical flood inundation models traditionally used. While satellites do offer timely inundation information when they happen to cover an ongoing flood event, they are limited by their spatiotemporal resolution in terms of their ability to dynamically monitor flood evolution at various scales. Constantly improving access to new satellite data sources as well as big data processing capabilities has unlocked an unprecedented number of possibilities in terms of data-driven solutions to this problem. Specifically, the fusion of data from satellites, such as the Copernicus Sentinels, which have high spatial and low temporal resolution, with data from NASA SMAP and GPM missions, which have low spatial but high temporal resolutions could yield high-resolution flood inundation at a daily scale. Here a Convolutional-Neural-Network is trained using flood inundation maps derived from Sentinel-1 Synthetic Aperture Radar and various hydrological, topographical, and land-use based predictors for the first time, to predict high-resolution probabilistic maps of flood inundation. The performance of UNet and SegNet model architectures for this task is evaluated, using flood masks derived from Sentinel-1 and Sentinel-2, separately with 95 percent-confidence intervals. The Area under the Curve (AUC) of the Precision Recall Curve (PR-AUC) is used as the main evaluation metric, due to the inherently imbalanced nature of classes in a binary flood mapping problem, with the best model delivering a PR-AUC of 0.85.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源