论文标题
通过位点选择性的阴极发光光谱探测的非中心等离激晶晶体中的自旋轨道相互作用
Spin-orbit interactions in noncentrosymmetric plasmonic crystals probed by site-selective cathodoluminescence spectroscopy
论文作者
论文摘要
对光的自旋轨道耦合(SOC)的研究对于探索与对称性破裂的亚波长纳米结构中的光结合相互作用至关重要。在非中心对称光子晶体中,SOC导致原本退化的能带的分裂。本文中,我们在理论上和实验上探索了非中心等离激晶晶体中的SOC。阴极发光(CL)光谱与数值计算的光子带结构相结合,揭示了一种能带分裂,该能带归因于非中心对称等离激晶晶体中损坏的对称性。通过将电子束的冲击位置转移到等离激晶晶体的晶胞中,我们表明能量带分裂的出现很大程度上取决于晶体上表面等离子体(SP)波的激发位置。此外,我们利用角度分辨的Cl和深色场极化法证明了与等离子晶体相互作用的Sp波的偏振依赖性散射。给定极化的散射方向是由SP波固有地携带的横向自旋角动量确定的,SP波又锁定到SP传播的方向。我们的研究深入了解了具有Bloch等离子体极化依赖性方向性的新型等离子设备的设计。我们预计,随着纳米制作方法的持续发展并发现旋转轨道相互作用的新方面。
The study of spin-orbit coupling (SOC) of light is crucial to explore the light-matter interactions in sub-wavelength nanostructures with broken symmetries. In noncentrosymmetric photonic crystals, the SOC results in the splitting of the otherwise degenerate energy bands. Herein, we explore the SOC in a noncentrosymmetric plasmonic crystal, both theoretically and experimentally. Cathodoluminescence (CL) spectroscopy combined with the numerically calculated photonic band structure reveals an energy band splitting that is ascribed to the broken symmetries in the noncentrosymmetric plasmonic crystal. By shifting the impact position of the electron beam throughout a unit cell of the plasmonic crystal, we show that the emergence of the energy band splitting strongly depends on the excitation position of the surface plasmon (SP) waves on the crystal. Moreover, we exploit angle-resolved CL and dark-field polarimetry to demonstrate polarization-dependent scattering of SP waves interacting with the plasmonic crystal. The scattering direction of a given polarization is determined by the transverse spin angular momentum inherently carried by the SP wave, which is in turn locked to the direction of SP propagation. Our study gives insight into the design of novel plasmonic devices with polarization-dependent directionality of the Bloch plasmons. We expect spin-orbit plasmonics will find much more scientific interests and potential applications with the continuous development of nanofabrication methodologies and uncovering new aspects of spin-orbit interactions.