论文标题

分布式卡尔曼过滤的共识优化方法:通过证明的集中式过滤的性能恢复

Consensus optimization approach for distributed Kalman filtering: performance recovery of centralized filtering with proofs

论文作者

Ryu, Kunhee, Back, Juhoon

论文摘要

本文从分布式优化观点研究了分布式的卡尔曼过滤(DKF)。由于Kalman过滤是最大的后验估计(MAP)问题,这是一个二次优化问题,我们将DKF问题重新制定为共识优化问题,从而将其通过许多现有的分布式优化算法来解决。提出了一种采用双重上升方法的新的DKF算法,并在轻度假设下证明了其稳定性。通过数值实验评估所提出的算法的性能。

This paper investigates the distributed Kalman filtering (DKF) from distributed optimization viewpoint. Motivated by the fact that Kalman filtering is a maximum a posteriori estimation (MAP) problem, which is a quadratic optimization problem, we reformulate DKF problem as a consensus optimization problem, resulting in that it can be solved by many existing distributed optimization algorithms. A new DKF algorithm employing the dual ascent method is proposed, and its stability is proved under mild assumptions. The performance of the proposed algorithm is evaluated through numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源