论文标题
因果干预改善隐性情感分析
Causal Intervention Improves Implicit Sentiment Analysis
论文作者
论文摘要
尽管在情感分析方面取得了巨大的成功,但现有的神经模型在隐式情感分析中挣扎。这可能是由于它们可能会锁定虚假的相关性(例如,“捷径”,例如,仅关注明确的情感词),从而破坏了学习模型的有效性和鲁棒性。在这项工作中,我们提出了一种使用仪器变量(ISAIV)的因果干预模型,用于隐式情感分析。我们首先从因果角度审查情感分析,并分析此任务中存在的混杂因素。然后,我们引入了一个仪器变量,以消除混杂的因果效应,从而在句子和情感之间提取纯粹的因果效应。我们将所提出的ISAIV模型与几个强大的基线进行比较,这是一般的隐式情感分析和基于方面的隐式情感分析任务。结果表明我们模型的巨大优势以及隐式情感推理的功效。
Despite having achieved great success for sentiment analysis, existing neural models struggle with implicit sentiment analysis. This may be due to the fact that they may latch onto spurious correlations ("shortcuts", e.g., focusing only on explicit sentiment words), resulting in undermining the effectiveness and robustness of the learned model. In this work, we propose a causal intervention model for Implicit Sentiment Analysis using Instrumental Variable (ISAIV). We first review sentiment analysis from a causal perspective and analyze the confounders existing in this task. Then, we introduce an instrumental variable to eliminate the confounding causal effects, thus extracting the pure causal effect between sentence and sentiment. We compare the proposed ISAIV model with several strong baselines on both the general implicit sentiment analysis and aspect-based implicit sentiment analysis tasks. The results indicate the great advantages of our model and the efficacy of implicit sentiment reasoning.