论文标题

评估图形神经网络的解释性

Evaluating Explainability for Graph Neural Networks

论文作者

Agarwal, Chirag, Queen, Owen, Lakkaraju, Himabindu, Zitnik, Marinka

论文摘要

由于事后解释越来越多地用于了解图神经网络(GNN)的行为,因此评估GNN解释的质量和可靠性至关重要。但是,评估GNN解释的质量是具有挑战性的,因为现有的图形数据集对给定任务没有或不可靠的地面真相解释。在这里,我们介绍了一个合成图数据生成器Shapeggen,该生成可以生成各种基准数据集(例如,不同的图形大小,度分布,同粒细胞与异性图),并伴随着地面真相解释。此外,生成各种合成数据集和相应的基础真相解释的灵活性使我们能够模仿各种现实世界应用程序生成的数据。我们将ShapeGgen和几个现实世界图数据集包括在开源图形图库GraphXai中。除了带有基础真相说明的合成和现实图形数据集外,GraphXai还提供数据加载程序,数据处理功能,可视化器,GNN模型实现和评估指标,以基准基准GNN解释性方法的性能。

As post hoc explanations are increasingly used to understand the behavior of graph neural networks (GNNs), it becomes crucial to evaluate the quality and reliability of GNN explanations. However, assessing the quality of GNN explanations is challenging as existing graph datasets have no or unreliable ground-truth explanations for a given task. Here, we introduce a synthetic graph data generator, ShapeGGen, which can generate a variety of benchmark datasets (e.g., varying graph sizes, degree distributions, homophilic vs. heterophilic graphs) accompanied by ground-truth explanations. Further, the flexibility to generate diverse synthetic datasets and corresponding ground-truth explanations allows us to mimic the data generated by various real-world applications. We include ShapeGGen and several real-world graph datasets into an open-source graph explainability library, GraphXAI. In addition to synthetic and real-world graph datasets with ground-truth explanations, GraphXAI provides data loaders, data processing functions, visualizers, GNN model implementations, and evaluation metrics to benchmark the performance of GNN explainability methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源