论文标题
J-Plus:使用虚拟天文台工具II发现和表征Ultracool矮人。第二个数据发布和机器学习方法
J-PLUS: Discovery and characterisation of ultracool dwarfs using Virtual Observatory tools II. Second data release and machine learning methodology
论文作者
论文摘要
Ultracool矮化(UCDS)包括恒星种群中最低的质量成员和棕色矮人,从M7 V到具有L,T和Y光谱类型的较凉的物体。他们中的大多数是使用宽阔的成像调查发现的,对于该调查,虚拟观测站(VO)已被证明具有很大的实用性。我们旨在在整个Javalambre光度局部宇宙调查(J-Plus)第二个数据发布(2176 v $^2 $)中对UCD进行搜索。我们还探索了仅依靠J-Plus光度法的纯机器学习(ML)方法来重现此搜索的能力。我们使用VOSA工具分别根据视差,适当的运动和颜色遵循了三种不同的方法来估计有效的温度。对于ML方法,我们基于主组件分析和支持向量机算法建立了两步方法。我们总共确定了7827个新候选UCD,这在J-Plus第二个数据发布的天空覆盖范围中报告的UCD数量增加了约135%。在候选UCD中,我们发现了122个可能的未解决的二进制系统,78个宽的多个系统和48个物体,具有属于年轻关联的高贝叶斯概率。我们还确定了与Ca II H和K发射线相对应的滤波器中的四个对象,以及H $α$滤波器中发射过量的四个对象。使用ML方法,我们在测试和盲测中分别获得了92%和91%的召回评分。我们合并了UCD的拟议搜索方法,该方法将用于更深入,更大的即将进行的调查,例如J-PAS和Euclid。我们得出的结论是,ML方法学更为有效,从某种意义上说,它允许在使用VOSA分析之前将大量的真实负面因素丢弃,尽管它具有更大的光度限制。
Ultracool dwarfs (UCDs) comprise the lowest mass members of the stellar population and brown dwarfs, from M7 V to cooler objects with L, T, and Y spectral types. Most of them have been discovered using wide-field imaging surveys, for which the Virtual Observatory (VO) has proven to be of great utility. We aim to perform a search for UCDs in the entire Javalambre Photometric Local Universe Survey (J-PLUS) second data release (2176 deg$^2$) following a VO methodology. We also explore the ability to reproduce this search with a purely machine learning (ML)-based methodology that relies solely on J-PLUS photometry. We followed three different approaches based on parallaxes, proper motions, and colours, respectively, using the VOSA tool to estimate the effective temperatures. For the ML methodology, we built a two-step method based on principal component analysis and support vector machine algorithms. We identified a total of 7827 new candidate UCDs, which represents an increase of about 135% in the number of UCDs reported in the sky coverage of the J-PLUS second data release. Among the candidate UCDs, we found 122 possible unresolved binary systems, 78 wide multiple systems, and 48 objects with a high Bayesian probability of belonging to a young association. We also identified four objects with strong excess in the filter corresponding to the Ca II H and K emission lines and four other objects with excess emission in the H$α$ filter. With the ML approach, we obtained a recall score of 92% and 91% in the test and blind test, respectively. We consolidated the proposed search methodology for UCDs, which will be used in deeper and larger upcoming surveys such as J-PAS and Euclid. We concluded that the ML methodology is more efficient in the sense that it allows for a larger number of true negatives to be discarded prior to analysis with VOSA, although it is more photometrically restrictive.