论文标题
玻色纤维混合物的密度概率和量子临界现象,具有1D双井潜力
Density probabilities and quantum critical phenomena of a Bose-Fermi Mixture in 1D Double well potential
论文作者
论文摘要
通过两种模式近似研究,研究了概率密度,基态保真度和Bose-Fermi混合物的纠缠的时间演变。我们发现,量子回报概率的行为显示了三个不同的区域。第一个区域的特征是完全混乱,玻色子和费米昂的隧道相关。第二区的特征是相关的顺序隧道,在最后一个区域,我们发现这两个物种的隧道频率增加。 我们通过冯·诺伊曼(Von Neumann)的熵发现,玻色子纤维耦合允许在相同值中最大程度地纠缠玻色子和费米子的量子相关性。最后,我们计算了$λ_{ff}-λ_{bf} $和$λ_{bb}-λ_{bf} $ planes中的保真度,我们发现两个保真度的下降变得越来越深,随着玻色剂量相互作用的减少。
The time evolution of probability density, the ground-state fidelity and the entanglement of a Bose-Fermi mixture in a 1D double well potential, are studied through the two mode approximation. We found that the behaviour of the quantum return probability shows three distinct regions. The first region is characterized by a complete miscibility, and correlated tunneling of bosons and fermion. The second region is characterized by correlated sequential tunneling and in the last region we found an increase in the tunneling frequency of the two species. We found through the Von Neumann entropy, that the boson-fermion coupling allows a maximum entanglement of quantum correlations of bosons and fermions in the same value. Finally we calculated the fidelity in the $λ_{FF}-λ_{BF}$ and $λ_{BB}-λ_{BF}$ planes and we found that the drop of the two fidelities becomes deeper and deeper as the boson-fermion interaction decreases.