论文标题

Glass-Vault:通用透明隐私的曝光通知分析平台

Glass-Vault: A Generic Transparent Privacy-preserving Exposure Notification Analytics Platform

论文作者

Martinico, Lorenzo, Abadi, Aydin, Zacharias, Thomas, Win, Thomas

论文摘要

高度传播的Covid-19疾病是对人们的健康和生活的严重威胁。为了自动追踪那些与新感染的人保持紧密接触和/或分析与跟踪相关的数据的亲密接触的人,研究人员提出了各种临时计划,这些程序需要在用户的智能手机上执行。但是,现有解决方案有两个主要局限性:(1)缺乏通用性:对于每种类型的分析任务,需要将某种数据发送给分析师; (2)缺乏透明度:向分析师提供数据的当事方不一定是受感染的人;因此,未经其细粒度和直接同意,可以与他人共享感染的个人数据(例如,分析师)。在这项工作中,我们提出了玻璃资库,该协议可以同时解决这两个限制。它允许分析师在不学习输入数据的情况下通过传染性用户的收集数据运行授权的程序。 Glass-Vault依赖于我们在这项工作中提出的新的通用功能加密变体。这种称为DD-Steel的新变体提供了这两个其他属性:动态和分散的。我们说明了通用合并设置中Glass-Vault和DD-Steel的安全性。 Glass-Vault是第一个UC-Secure协议,它允许以隐私的方式分析曝光通知用户的数据。作为样本应用,我们指出了如何用于生成“感染热图”。

The highly transmissible COVID-19 disease is a serious threat to people's health and life. To automate tracing those who have been in close physical contact with newly infected people and/or to analyse tracing-related data, researchers have proposed various ad-hoc programs that require being executed on users' smartphones. Nevertheless, the existing solutions have two primary limitations: (1) lack of generality: for each type of analytic task, a certain kind of data needs to be sent to an analyst; (2) lack of transparency: parties who provide data to an analyst are not necessarily infected individuals; therefore, infected individuals' data can be shared with others (e.g., the analyst) without their fine-grained and direct consent. In this work, we present Glass-Vault, a protocol that addresses both limitations simultaneously. It allows an analyst to run authorised programs over the collected data of infectious users, without learning the input data. Glass-Vault relies on a new variant of generic Functional Encryption that we propose in this work. This new variant, called DD-Steel, offers these two additional properties: dynamic and decentralised. We illustrate the security of both Glass-Vault and DD-Steel in the Universal Composability setting. Glass-Vault is the first UC-secure protocol that allows analysing the data of Exposure Notification users in a privacy-preserving manner. As a sample application, we indicate how it can be used to generate "infection heatmaps".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源