论文标题
Feldman-Katok度量平均维度的变分原理
Variational principles for Feldman-Katok metric mean dimension
论文作者
论文摘要
我们介绍了本说明中Feldman-Katok度量平均维度的概念。我们显示的指标平均维度是由不同的度量标准定义的,在覆盖数的较弱的驯服增长下重合,并建立了Feldman-Katok度量平均尺寸的变异原理,该规范的含量为fk katok $ε$ -Entropy和fk local $ε$ -Entropy函数。
We introduce the notion of Feldman-Katok metric mean dimensions in this note. We show metric mean dimensions defined by different metrics coincide under weak tame growth of covering numbers, and establish variational principles for Feldman-Katok metric mean dimensions in terms of FK Katok $ε$-entropy and FK local $ε$-entropy function.