论文标题
MlexChange:一个基于Web的平台,启用可交换机器学习工作流程的科学研究
MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies
论文作者
论文摘要
机器学习(ML)算法在帮助不同学科和机构的科学社区解决大型和多样化的数据问题方面表现出了增长的趋势。但是,许多可用的ML工具在编程方面的要求和计算成本高昂。 MlexChange项目旨在建立一个配备有能力工具的协作平台,该平台允许没有深刻的ML背景的科学家和设施使用者在科学发现中使用ML和计算资源。在高水平上,我们针对完整的用户体验,在该体验中,管理和交换ML算法,工作流和数据可以通过Web应用程序很容易获得。由于每个组件都是一个独立的容器,因此整个平台或其个人服务可以轻松地在不同尺度的服务器上部署,从个人设备(笔记本电脑,智能手机等)到许多用户访问(同时)的高性能群集(HPC)。因此,MlexChange使用方案使灵活性变得灵活 - 用户可以从远程服务器访问服务和资源,也可以在其本地网络中运行整个平台或其个人服务。
Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios -- users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.