论文标题

部分可观测时空混沌系统的无模型预测

Efficient generation of spin currents by the Orbital Hall effect in pure Cu and Al and their measurement by a Ferris-wheel ferromagnetic resonance technique at the wafer level

论文作者

Rothschild, Amit, Am-Shalom, Nadav, Bernstein, Nirel, Meron, Mayan, David, Tal, Assouline, Benjamin, Frohlich, Elichai, Xiao, Jiewen, Yan, Binghai, Capua, Amir

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a new ferromagnetic resonance (FMR) method that we term the Ferris FMR. It is wideband, has significantly higher sensitivity as compared to conventional FMR systems, and measures the absorption line rather than its derivative. It is based on large-amplitude modulation of the externally applied magnetic field that effectively magnifies signatures of the spin-transfer torque making its measurement possible even at the wafer-level. Using the Ferris FMR, we report on the generation of spin currents from the orbital Hall effect taking place in pure Cu and Al. To this end, we use the spin-orbit coupling of a thin Pt layer introduced at the interface that converts the orbital current to a measurable spin current. While Cu reveals a large effective spin Hall angle exceeding that of Pt, Al possesses an orbital Hall effect of opposite polarity in agreement with the theoretical predictions. Our results demonstrate additional spin- and orbit- functionality for two important metals in the semiconductor industry beyond their primary use as interconnects with all the advantages in power, scaling, and cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源