论文标题

环形:可见的红外人重新识别的中性但歧视性特征

CycleTrans: Learning Neutral yet Discriminative Features for Visible-Infrared Person Re-Identification

论文作者

Wu, Qiong, Xia, Jiaer, Dai, Pingyang, Zhou, Yiyi, Wu, Yongjian, Ji, Rongrong

论文摘要

可见的红外人员重新识别(VI-REID)是与可见和红外形态相同的人匹配的任务。它的主要挑战在于由在不同光谱上运行的相机引起的方式差距。现有的Vi-Reid方法主要集中于跨模式学习一般特征,通常是以特征可区分性为代价。为了解决这个问题,我们提出了一个基于周期的新型网络,用于中性但歧视性特征学习,称为环形。具体而言,Cycletrans使用轻巧的知识捕获模块(KCM)根据伪查询从与模态相关的特征地图捕获丰富的语义。之后,根据模态 - 意外的原型将这些特征转换为中性特征,将差异建模模块(DMM)转换为中性。为了确保特征可区分性,进一步部署了另外两个KCMs以进行特征周期结构。通过自行车结构,我们的方法可以在保留其出色的语义的同时学习有效的中性特征。在SYSU-MM01和REGDB数据集上进行的广泛实验验证了Cycletrans的优点,可针对最先进的方法进行验证,在SYSU-MM01中排名1的 +4.57%,REGDB中排名1的优点为 +2.2%。

Visible-infrared person re-identification (VI-ReID) is a task of matching the same individuals across the visible and infrared modalities. Its main challenge lies in the modality gap caused by cameras operating on different spectra. Existing VI-ReID methods mainly focus on learning general features across modalities, often at the expense of feature discriminability. To address this issue, we present a novel cycle-construction-based network for neutral yet discriminative feature learning, termed CycleTrans. Specifically, CycleTrans uses a lightweight Knowledge Capturing Module (KCM) to capture rich semantics from the modality-relevant feature maps according to pseudo queries. Afterwards, a Discrepancy Modeling Module (DMM) is deployed to transform these features into neutral ones according to the modality-irrelevant prototypes. To ensure feature discriminability, another two KCMs are further deployed for feature cycle constructions. With cycle construction, our method can learn effective neutral features for visible and infrared images while preserving their salient semantics. Extensive experiments on SYSU-MM01 and RegDB datasets validate the merits of CycleTrans against a flurry of state-of-the-art methods, +4.57% on rank-1 in SYSU-MM01 and +2.2% on rank-1 in RegDB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源