论文标题

科恩保护与独立

Cohen Preservation and Independence

论文作者

Fischer, Vera, Switzer, Corey Bacal

论文摘要

我们提供了一般保护定理,用于在可数的支持迭代中保存选择性独立家庭。该定理为文献中的许多结果提供了一个一般框架,其中独立数字$ \ mathfrak {i} $严格低于$ \ mathfrak {c} $,包括麻袋强迫的迭代,米勒分区强迫,$ h $ h $ - $ h $ - $ h $ - 完美树的编码。此外,应用定理,我们表明$ \ mathfrak {i} = \ aleph_1 $在Miller Lite模型中。保存定理的一个重要方面是“ Cohen Preservation”的概念,我们会详细讨论。

We provide a general preservation theorem for preserving selective independent families along countable support iterations. The theorem gives a general framework for a number of results in the literature concerning models in which the independence number $\mathfrak{i}$ is strictly below $\mathfrak{c}$, including iterations of Sacks forcing, Miller partition forcing, $h$-perfect tree forcings, coding with perfect trees. Moreover, applying the theorem, we show that $\mathfrak{i} = \aleph_1$ in the Miller Lite model. An important aspect of the preservation theorem is the notion of "Cohen preservation", which we discuss in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源