论文标题
带有多个容量受限机器人的区域覆盖范围
Area Coverage with Multiple Capacity-Constrained Robots
论文作者
论文摘要
区域覆盖范围问题是使用安装在机器人(如无人机)(无人机)和无人接地车辆(UGV)等机器人上的传感器有效维修给定的二维表面的任务。我们提出了一种新颖的配方,用于生成多个容量约束机器人的覆盖路线,可以根据电池寿命或飞行时间指定容量。遍历环境对具有容量限制的机器人资源的需求。我们方法的中心方面是将区域覆盖问题转换为线覆盖范围问题(即线性特征的覆盖范围),然后生成途径,以最大程度地减少旅行的总成本,同时尊重容量约束。我们定义了两种旅行模式:(1)维修和(2)无人机,这与机器人是否执行特定于任务的操作相对应。我们的配方允许对两种模式的单独和不对称的旅行成本和需求。此外,从细胞分解计算出的细胞旨在最小化转弯数,不需要单调多边形。我们为细胞分解和生成服务轨道开发了新的程序,这些过程可以处理有或没有孔的非符号酮多边形。我们在具有25个室内环境的地面机器人数据集上建立了算法的功效,还有一个具有300个室外环境的空中机器人数据集。该算法生成的解决方案的成本比最新方法平均低10%。我们还证明了我们在无人机实验中的算法。
The area coverage problem is the task of efficiently servicing a given two-dimensional surface using sensors mounted on robots such as unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). We present a novel formulation for generating coverage routes for multiple capacity-constrained robots, where capacity can be specified in terms of battery life or flight time. Traversing the environment incurs demands on the robot resources, which have capacity limits. The central aspect of our approach is transforming the area coverage problem into a line coverage problem (i.e., coverage of linear features), and then generating routes that minimize the total cost of travel while respecting the capacity constraints. We define two modes of travel: (1) servicing and (2) deadheading, which correspond to whether a robot is performing task-specific actions or not. Our formulation allows separate and asymmetric travel costs and demands for the two modes. Furthermore, the cells computed from cell decomposition, aimed at minimizing the number of turns, are not required to be monotone polygons. We develop new procedures for cell decomposition and generation of service tracks that can handle non-monotone polygons with or without holes. We establish the efficacy of our algorithm on a ground robot dataset with 25 indoor environments and an aerial robot dataset with 300 outdoor environments. The algorithm generates solutions whose costs are 10% lower on average than state-of-the-art methods. We additionally demonstrate our algorithm in experiments with UAVs.