论文标题
使用神经网络的无迭代量子近似优化算法
Iterative-Free Quantum Approximate Optimization Algorithm Using Neural Networks
论文作者
论文摘要
量子近似优化算法(QAOA)是用于启发式求解组合优化问题的领先迭代变分量子算法。优化步骤花费了QAOA中的大部分计算工作,这需要执行量子电路。因此,有积极的研究重点是寻找更好的初始电路参数,这将减少所需的迭代次数,从而减少总体执行时间。尽管现有的参数初始化方法已显示出巨大的成功,但它们通常为所有问题实例提供一组参数。我们提出了一种使用简单,完全连接的神经网络的实用方法,该方法利用QAOA的先前执行来找到针对新给定的问题实例量身定制的更好的初始化参数。我们基于使用QAOA解决ERDőS-Rényi图的最大问题的最新初始化方法,并表明我们的方法始终是最快收敛的,同时也产生了最佳最终结果。此外,在不需要迭代步骤的程度上,神经网络预测的参数与完全优化的参数非常匹配,从而有效地实现了无迭代的QAOA方案。
The quantum approximate optimization algorithm (QAOA) is a leading iterative variational quantum algorithm for heuristically solving combinatorial optimization problems. A large portion of the computational effort in QAOA is spent by the optimization steps, which require many executions of the quantum circuit. Therefore, there is active research focusing on finding better initial circuit parameters, which would reduce the number of required iterations and hence the overall execution time. While existing methods for parameter initialization have shown great success, they often offer a single set of parameters for all problem instances. We propose a practical method that uses a simple, fully connected neural network that leverages previous executions of QAOA to find better initialization parameters tailored to a new given problem instance. We benchmark state-of-the-art initialization methods for solving the MaxCut problem of Erdős-Rényi graphs using QAOA and show that our method is consistently the fastest to converge while also yielding the best final result. Furthermore, the parameters predicted by the neural network are shown to match very well with the fully optimized parameters, to the extent that no iterative steps are required, thereby effectively realizing an iterative-free QAOA scheme.