论文标题
扭曲的自以为是
Twisted Self-duality
论文作者
论文摘要
当颜色空间承认非平凡的交往时,我们研究了阳米尔斯理论的通常的自由度方程的概括。这种互动使我们能够构建一种非平凡的扭曲,该扭曲可能与霍奇星形成形成扭曲的自偶曲率。我们将为$ su(2)\ oplus su(2)$ gauge理论及其明确的解决方案构建一个简单的示例,其明确的解决方案,然后从四个维度降低尺寸,以获取较低维度的非平凡非线性方程的家族。通过Scherk-Schwarz的减少,这种扭曲的自偶性约束将在E_7出现的特殊场理论中出现,我们将展示Eguchi-Hanson引力internon如何服从扭曲的自由度条件。
We examine a generalisation of the usual self-duality equations for Yang-Mills theory when the colour space admits a non-trivial involution. This involution allows us to construct a non-trivial twist which may be combined with the Hodge star to form a twisted self-dual curvature. We will construct a simple example of twisted self-duality for $su(2) \oplus su(2)$ gauge theory along with its explicit solutions and then dimensionally reduce from four dimensions to obtain families of non-trivial non-linear equations in lower dimensions. This twisted self-duality constraint will be shown to arise in E_7 exceptional field theory through a Scherk-Schwarz reduction and we will show how an Eguchi-Hanson gravitational instanton also obeys the twisted self-duality condition.