论文标题

宣传:概率部分标签学习

ProPaLL: Probabilistic Partial Label Learning

论文作者

Struski, Łukasz, Tabor, Jacek, Zieliński, Bartosz

论文摘要

部分标签学习是一种弱监督的学习,每个培训实例都对应于一组候选标签,其中只有一个是真实的。在本文中,我们介绍了一种针对此问题的新型概率方法,与现有方法相比,该方法至少具有三个优势:它简化了训练过程,改善了性能并可以应用于任何深层体系结构。对人工和现实世界数据集进行的实验表明,诺言的表现优于现有方法。

Partial label learning is a type of weakly supervised learning, where each training instance corresponds to a set of candidate labels, among which only one is true. In this paper, we introduce ProPaLL, a novel probabilistic approach to this problem, which has at least three advantages compared to the existing approaches: it simplifies the training process, improves performance, and can be applied to any deep architecture. Experiments conducted on artificial and real-world datasets indicate that ProPaLL outperforms the existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源