论文标题
用于融合各种微生物组数据的图形模型
A Graphical Model for Fusing Diverse Microbiome Data
论文作者
论文摘要
本文开发了一个贝叶斯图形模型,用于融合不同类型的计数数据。激励的应用是从不同治疗方法收集的各种高维特征的细菌群落研究。在这样的数据集中,社区之间没有明确的对应关系,每个对应都对应于不同的因素,从而使数据融合具有挑战性。我们引入了一种灵活的多项式高斯生成模型,用于共同建模此类计数数据。该潜在变量模型通过一个共同的多元高斯潜在空间共同表征了观察到的数据,该空间参数化了转录组计数的多项式概率集。潜在变量的协方差矩阵诱导所有转录本之间共同依赖性的协方差矩阵,有效地融合了多个数据源。我们提出了一种可扩展的可扩展性变异期望最大化(EM)算法,用于推断模型的潜在变量和参数。推断的潜在变量为可视化数据提供了常见的维度降低,而推断的参数则提供了预测性的后验分布。除了证明变异性程序过程的模拟研究外,我们还将模型应用于细菌微生物组数据集。
This paper develops a Bayesian graphical model for fusing disparate types of count data. The motivating application is the study of bacterial communities from diverse high dimensional features, in this case transcripts, collected from different treatments. In such datasets, there are no explicit correspondences between the communities and each correspond to different factors, making data fusion challenging. We introduce a flexible multinomial-Gaussian generative model for jointly modeling such count data. This latent variable model jointly characterizes the observed data through a common multivariate Gaussian latent space that parameterizes the set of multinomial probabilities of the transcriptome counts. The covariance matrix of the latent variables induces a covariance matrix of co-dependencies between all the transcripts, effectively fusing multiple data sources. We present a computationally scalable variational Expectation-Maximization (EM) algorithm for inferring the latent variables and the parameters of the model. The inferred latent variables provide a common dimensionality reduction for visualizing the data and the inferred parameters provide a predictive posterior distribution. In addition to simulation studies that demonstrate the variational EM procedure, we apply our model to a bacterial microbiome dataset.