论文标题

用于营销活动效果的分层胶囊预测网络

Hierarchical Capsule Prediction Network for Marketing Campaigns Effect

论文作者

Chu, Zhixuan, Ding, Hui, Zeng, Guang, Huang, Yuchen, Yan, Tan, Kang, Yulin, Li, Sheng

论文摘要

营销活动是一系列战略活动,可以促进企业的目标。在真正的工业场景中,营销活动的效果预测非常复杂且具有挑战性,因为通常从观察数据中学到了先验知识,而没有任何营销活动干预。此外,每个主题始终同时受到几个营销活动的干扰。因此,我们无法轻松解析和评估单个营销活动的效果。据我们所知,目前尚无有效的方法来解决此类问题,即,基于具有多个相互交织事件的层次结构来建模个体级别的预测任务。在本文中,我们对效果预测任务中涉及的基础解析树状结构进行了深入的分析,并进一步建立了一个层次结构胶囊预测网络(HAPNET),以预测营销活动的影响。基于综合数据和实际数据的广泛结果证明了我们模型比最新方法的优越性,并在实际工业应用中表现出显着的实用性。

Marketing campaigns are a set of strategic activities that can promote a business's goal. The effect prediction for marketing campaigns in a real industrial scenario is very complex and challenging due to the fact that prior knowledge is often learned from observation data, without any intervention for the marketing campaign. Furthermore, each subject is always under the interference of several marketing campaigns simultaneously. Therefore, we cannot easily parse and evaluate the effect of a single marketing campaign. To the best of our knowledge, there are currently no effective methodologies to solve such a problem, i.e., modeling an individual-level prediction task based on a hierarchical structure with multiple intertwined events. In this paper, we provide an in-depth analysis of the underlying parse tree-like structure involved in the effect prediction task and we further establish a Hierarchical Capsule Prediction Network (HapNet) for predicting the effects of marketing campaigns. Extensive results based on both the synthetic data and real data demonstrate the superiority of our model over the state-of-the-art methods and show remarkable practicability in real industrial applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源