论文标题

基于跨变压器网络的深3D容器分割

Deep 3D Vessel Segmentation based on Cross Transformer Network

论文作者

Pan, Chengwei, Qi, Baolian, Zhao, Gangming, Liu, Jiaheng, Fang, Chaowei, Zhang, Dingwen, Li, Jinpeng

论文摘要

冠状动脉微血管疾病对人类健康构成了巨大威胁。计算机辅助分析/诊断系统可帮助医生在早期阶段干预该疾病,其中3D血管分割是基本的一步。但是,缺乏精心注释的数据集来支持算法开发和评估。另一方面,常用的U-NET结构通常会产生断开和不准确的分割结果,尤其是对于小血管结构。在数据稀缺性的推动下,我们首先构建了两个大规模的容器分割数据集,该数据集由经验丰富的放射科医生由100和500计算机断层扫描(CT)卷和像素级注释。为了增强U-NET,我们进一步提出了跨变压器网络(CTN),以进行细粒的血管分割。在CTN中,变压器模块是与U-NET并行构造的,以学习不同解剖区域之间的长距离依赖性。这些依赖项在多个阶段都传达给U-NET,以赋予其全球意识。两个内部数据集的实验结果表明,该混合模型通过考虑跨区域的拓扑信息来减轻意外的断开连接。我们的代码以及训练有素的模型可在https://github.com/qibaolian/ctn上公开提供。

The coronary microvascular disease poses a great threat to human health. Computer-aided analysis/diagnosis systems help physicians intervene in the disease at early stages, where 3D vessel segmentation is a fundamental step. However, there is a lack of carefully annotated dataset to support algorithm development and evaluation. On the other hand, the commonly-used U-Net structures often yield disconnected and inaccurate segmentation results, especially for small vessel structures. In this paper, motivated by the data scarcity, we first construct two large-scale vessel segmentation datasets consisting of 100 and 500 computed tomography (CT) volumes with pixel-level annotations by experienced radiologists. To enhance the U-Net, we further propose the cross transformer network (CTN) for fine-grained vessel segmentation. In CTN, a transformer module is constructed in parallel to a U-Net to learn long-distance dependencies between different anatomical regions; and these dependencies are communicated to the U-Net at multiple stages to endow it with global awareness. Experimental results on the two in-house datasets indicate that this hybrid model alleviates unexpected disconnections by considering topological information across regions. Our codes, together with the trained models are made publicly available at https://github.com/qibaolian/ctn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源