论文标题

噪音适应智能的可编程元模子

Noise-Adaptive Intelligent Programmable Meta-Imager

论文作者

Qian, Chenqi, del Hougne, Philipp

论文摘要

我们提出了一个智能的可编程元映射器,该计算元ibager量身定制其连贯的场景序列,不仅是针对特定的信息提取任务(例如,对象识别),而且还适应了不同类型和噪声水平。我们系统地研究了学习的照明模式如何取决于噪声,我们发现可以直观地理解学习照明模式的强度和重叠的趋势。我们基于微波动态跨表面天线(DMA)的分析耦合 - 偶极向前模型进行分析;我们制定了一个可区分的端到端信息流管道,该管道包括可编程的物理测量过程,包括噪声以及随后的数字处理层。该管道使我们能够共同设计可编程的物理重量(确定连贯场景照明的DMA配置)和可训练的数字权重。我们的噪声自适应智能元想象的表现优于常规使用伪随机照明模式,这在使足够的与任务相关的信息具有挑战性的条件下最清楚地挑战:延迟约束(限制允许测量的数量)和强噪声。在室内监视和地球观察中,可编程的微波元想象将面临这些条件。

We present an intelligent programmable computational meta-imager that tailors its sequence of coherent scene illuminations not only to a specific information-extraction task (e.g., object recognition) but also adapts to different types and levels of noise. We systematically study how the learned illumination patterns depend on the noise, and we discover that trends in intensity and overlap of the learned illumination patterns can be understood intuitively. We conduct our analysis based on an analytical coupled-dipole forward model of a microwave dynamic metasurface antenna (DMA); we formulate a differentiable end-to-end information-flow pipeline comprising the programmable physical measurement process including noise as well as the subsequent digital processing layers. This pipeline allows us to jointly inverse-design the programmable physical weights (DMA configurations that determine the coherent scene illuminations) and the trainable digital weights. Our noise-adaptive intelligent meta-imager outperforms the conventional use of pseudo-random illumination patterns most clearly under conditions that make the extraction of sufficient task-relevant information challenging: latency constraints (limiting the number of allowed measurements) and strong noise. Programmable microwave meta-imagers in indoor surveillance and earth observation will be confronted with these conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源