论文标题
$ \ mathbb {r}^{n+1} $的分形域中的marcinkiewicz指数和边界价值问题
Marcinkiewicz Exponent and Boundary Value Problems in Fractal Domains of $\mathbb{R}^{n+1}$
论文作者
论文摘要
本文旨在研究欧几里得空间分形超曲面中单基因功能的跳跃问题。已经考虑了Marcinkiewicz指数的概念。获得了新的可溶性条件,以克利福德分析中Teodorescu变换的特定特性为基础。结果表明,这种情况改善了涉及Minkowski维度的条件。
This paper aims to study the jump problem for monogenic functions in fractal hypersurfaces of Euclidean spaces. The notion of the Marcinkiewicz exponent has been taken into consideration. A new solvability condition is obtained, basing the work on specific properties of the Teodorescu transform in Clifford analysis. It is shown that this condition improves those involving the Minkowski dimension.