论文标题

$ \ mathbb {r}^{n+1} $的分形域中的marcinkiewicz指数和边界价值问题

Marcinkiewicz Exponent and Boundary Value Problems in Fractal Domains of $\mathbb{R}^{n+1}$

论文作者

Castro, Carlos Daniel Tamayo

论文摘要

本文旨在研究欧几里得空间分形超曲面中单基因功能的跳跃问题。已经考虑了Marcinkiewicz指数的概念。获得了新的可溶性条件,以克利福德分析中Teodorescu变换的特定特性为基础。结果表明,这种情况改善了涉及Minkowski维度的条件。

This paper aims to study the jump problem for monogenic functions in fractal hypersurfaces of Euclidean spaces. The notion of the Marcinkiewicz exponent has been taken into consideration. A new solvability condition is obtained, basing the work on specific properties of the Teodorescu transform in Clifford analysis. It is shown that this condition improves those involving the Minkowski dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源