论文标题
野外动态面部表达识别的强度感知损失
Intensity-Aware Loss for Dynamic Facial Expression Recognition in the Wild
论文作者
论文摘要
与基于图像的静态面部表达识别(SFER)任务相比,基于视频序列的动态面部表达识别(DFER)任务更接近自然表达识别场景。但是,DFE通常更具挑战性。主要原因之一是,视频序列通常包含具有不同表达强度的框架,尤其是对于现实世界情景中的面部表情,而SFER中的图像经常呈现均匀和高表达强度。但是,如果同样处理具有不同强度的表达式,则网络学到的特征将具有较大的类内和小类间差异,这对DFER有害。为了解决这个问题,我们建议全球卷积注意区(GCA)重新列出特征地图的渠道。此外,我们在训练过程中介绍了强度感知损失(IAL),以帮助网络区分具有相对较低表达强度的样品。在两个野外动态面部表达数据集(即DFEW和FERV39K)上进行实验表明,我们的方法表现优于最新的DFER方法。源代码将公开可用。
Compared with the image-based static facial expression recognition (SFER) task, the dynamic facial expression recognition (DFER) task based on video sequences is closer to the natural expression recognition scene. However, DFER is often more challenging. One of the main reasons is that video sequences often contain frames with different expression intensities, especially for the facial expressions in the real-world scenarios, while the images in SFER frequently present uniform and high expression intensities. However, if the expressions with different intensities are treated equally, the features learned by the networks will have large intra-class and small inter-class differences, which is harmful to DFER. To tackle this problem, we propose the global convolution-attention block (GCA) to rescale the channels of the feature maps. In addition, we introduce the intensity-aware loss (IAL) in the training process to help the network distinguish the samples with relatively low expression intensities. Experiments on two in-the-wild dynamic facial expression datasets (i.e., DFEW and FERV39k) indicate that our method outperforms the state-of-the-art DFER approaches. The source code will be made publicly available.