论文标题

准周期晶格中的Bose-Einstein冷凝水:玻色症约瑟夫森连接,自捕捞和多模式动力学

Bose-Einstein condensates in quasi-periodic lattices: bosonic Josephson junction, self-trapping, and multi-mode dynamics

论文作者

Prates, Henrique C., Zezyulin, Dmitry A., Konotop, Vladimir V.

论文摘要

考虑到具有不一致时期的组成sublattices,在一维双分式晶格中加载的Bose-Einstein冷凝物被加载。我们使用不兑换期的有理近似值,我们表明,在迁移率边缘以下局部状态几乎均匀地分布在空间中,并探索了此类电位的多功能性。我们表明,对称和反对称局部化的叠加可用于模拟各种物理动力学状态,已知发生在双孔和多孔陷阱中。作为示例,我们获得了玻色粒约瑟夫森交界处的另一种实现,其连贯的振荡显示击败或在弱非线性方向上切换,描述自我捕获和四模式动力学,模仿连贯的振荡和四孔电位中的自我捕获。对于不同的模式,可以观察到这些现象,这些模式由于干扰而不是由于限制陷阱而定位。将使用几种模式近似值获得的结果与一维GROSS-PITAEVSKII方程的直接数值模拟进行了比较。即使在排斥的冷凝物中,局部状态和相关的动态也会长期存在。我们还描述了非线性模式的分叉,对称性破坏和稳定的迷你孤子。

Bose-Einstein condensates loaded in one-dimensional bichromatic optical lattices with constituent sublattices having incommensurate periods is considered. Using the rational approximations for the incommensurate periods, we show that below the mobility edge the localized states are distributed nearly homogeneously in the space and explore the versatility of such potentials. We show that superposition of symmetric and anti-symmetric localized can be used to simulate various physical dynamical regimes, known to occur in double-well and multi-well traps. As examples, we obtain an alternative realization of a bosonic Josephson junction, whose coherent oscillations display beatings or switching in the weakly nonlinear regime, describe selftrapping and four-mode dynamics, mimicking coherent oscillations and self-trapping in four-well potentials. These phenomena can be observed for different pairs of modes, which are localized due to the interference rather than due to a confining trap. The results obtained using few-mode approximations are compared with the direct numerical simulations of the one-dimensional Gross-Pitaevskii equation. The localized states and the related dynamics are found to persist for long times even in the repulsive condensates. We also described bifurcations of the families of nonlinear modes, the symmetry breaking and stable minigap solitons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源