论文标题

$ \ mathbb {r}^4 \ times s^3 $变形$ g_2 $ -instantons

Deformed $G_2$-instantons on $\mathbb{R}^4 \times S^3$

论文作者

Fowdar, Udhav

论文摘要

我们在$ \ mathbb {r}^4 \ times s^3 $上构建了变形的$ g_2 $ -instantons的明确示例,也称为Donaldson-Thomas Connections。并在$ \ Mathbb {r}^+\ times s^3 \ times s^3 $赋予了布莱恩特 - 萨拉曼圆锥形$ g_2 $ - 结构。这些是$ G_2 $歧管上的第一个此类非平凡示例。作为我们调查的副产品,我们还找到了$ \ mathbb {r}^4 \ times s^3 $ by $ \ mathbb {r}^2 \ times s^1 $的关联叶子。

We construct explicit examples of deformed $G_2$-instantons, also called Donaldson-Thomas connections, on $\mathbb{R}^4 \times S^3$ endowed with the torsion free $G_2$-structure found by Brandhuber et al. and on $\mathbb{R}^+\times S^3 \times S^3$ endowed with the Bryant-Salamon conical $G_2$-structure. These are the first such non-trivial examples on a $G_2$ manifold. As a by-product of our investigation we also find an associative foliation of $\mathbb{R}^4\times S^3$ by $\mathbb{R}^2 \times S^1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源