论文标题

用于高Q悬浮谐振器的磁性复合材料

Diamagnetic composites for high-Q levitating resonators

论文作者

Chen, Xianfeng, Ammu, Satya K., Masania, Kunal, Steeneken, Peter G., Alijani, Farbod

论文摘要

悬浮提供了机械系统与环境的极端隔离,同时实现了不受限制的高精度翻译和物体旋转。磁磁悬浮是最有吸引力的悬浮方案之一,因为它可以在室温下稳定悬浮,而无需连续电源。然而,传统磁磁材料中涡流的耗散显着限制了diamagnet上悬浮系统的应用潜力。在这里,我们通过使用基于石墨粒子的二氧化合物复合材料大大降低涡流阻尼来介绍了高$ Q $宏观的悬浮谐振器的途径。我们演示了谐振器,其具有质量因子$ Q $超过450,000的质量因素,并且振动寿命超过1小时,同时在室温下在高真空中悬浮在永久磁铁上方。复合谐振器的$ Q $比Diomagnetic石墨板高400倍。通过调整复合粒径和密度,我们研究了耗散机制,并增强了悬浮谐振器的$ Q $。由于其估计的加速度噪声与低温温度下的一些最佳超导悬浮加速度仪一样低,因此,高$ Q $和大量的复合谐振器将它们定位为下一代超敏感室温室温的最有希望的技术之一。

Levitation offers extreme isolation of mechanical systems from their environment, while enabling unconstrained high-precision translation and rotation of objects. Diamagnetic levitation is one of the most attractive levitation schemes, because it allows stable levitation at room temperature without the need for a continuous power supply. However, dissipation by eddy currents in conventional diamagnetic materials significantly limits the application potential of diamagnetically levitating systems. Here, we present a route towards high $Q$ macroscopic levitating resonators by substantially reducing eddy current damping using graphite particle based diamagnetic composites. We demonstrate resonators that feature quality factors $Q$ above 450,000 and vibration lifetimes beyond one hour, while levitating above permanent magnets in high vacuum at room temperature. The composite resonators have a $Q$ that is more than 400 times higher than that of diamagnetic graphite plates. By tuning the composite particle size and density, we investigate the dissipation reduction mechanism and enhance the $Q$ of the levitating resonators. Since their estimated acceleration noise is as low as some of the best superconducting levitating accelerometers at cryogenic temperatures, the high $Q$ and large mass of the presented composite resonators positions them as one of the most promising technologies for next generation ultra-sensitive room temperature accelerometers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源