论文标题
量规理论耦合在各向异性晶格上
Gauge Theory Couplings on Anisotropic Lattices
论文作者
论文摘要
通过有限的资源诱发有限体积和相当大的晶格间距,用量子计算机模拟晶格场理论的优点是陷入困境的。先前的工作表明,如何使用汉密尔顿极限附近的经典模拟通过分析延续实时设置晶格间距,从而减少量子模拟中的错误。在这项工作中,我们在任何各向异性因子(均等晶格间距与余时间间距的比率)以及$ u(n)$和$ su(n)$的任何空间尺寸中得出了欧几里得时空的裸机和重量化数量之间的扰动关系。这减少了量子模拟所需的经典预处理。我们发现我们的扰动结果与从$ SU(2)$(2)$和$ u(1)$ gauge理论的各向异性确定的现有非扰动确定的结果之间的差异不到$ 10 \%$。对于离散组,$ \ mathbb {z} _ {10} $,$ \ mathbb {z} _ {100} $和$ \ mathbb {bibb {bi} $,我们执行lattice Monte Carlo Simulations以提取各向异性因素并与我们的扰动结果相似。
The advantage of simulating lattice field theory with quantum computers is hamstrung by the limited resources that induce large errors from finite volume and sizable lattice spacings. Previous work has shown how classical simulations near the Hamiltonian limit can be used for setting the lattice spacings in real-time through analytical continuation, thereby reducing errors in quantum simulations. In this work, we derive perturbative relations between bare and renormalized quantities in Euclidean spacetime at any anisotropy factor -- the ratio of spatial to temporal lattice spacings -- and in any spatial dimension for $U(N)$ and $SU(N)$. This reduces the required classical preprocessing for quantum simulations. We find less than $10\%$ discrepancy between our perturbative results and those from existing nonperturbative determinations of the anisotropy for $SU(2)$ and $U(1)$ gauge theories. For the discrete groups $\mathbb{Z}_{10}$, $\mathbb{Z}_{100}$ and $\mathbb{BI}$, we perform lattice Monte Carlo simulations to extract anisotropy factors and observe similar agreement with our perturbative results.