论文标题

线性超图的常规子图

Regular subgraphs of linear hypergraphs

论文作者

Janzer, Oliver, Sudakov, Benny, Tomon, István

论文摘要

我们证明,$ n $ n $顶点的3-均匀线性超图中的最大边数为no no 2-repular subhypergraph为$ n^{1+o(1)} $。这解决了Dellamonica,Haxell,Luczak,Mubayi,Nagle,Person,Rödl,Schacht和Verstraëte的猜想。我们使用此结果表明,在$ 3 $均匀的超图中的最大边数在$ n $的顶点上,包含不浸入封闭表面的$ n^{2+o(1)} $。此外,我们在$ k $均匀的线性超图中介绍了最大边缘数量,其中包含$ r $ $ $ r $的subhypergraph。

We prove that the maximum number of edges in a 3-uniform linear hypergraph on $n$ vertices containing no 2-regular subhypergraph is $n^{1+o(1)}$. This resolves a conjecture of Dellamonica, Haxell, Luczak, Mubayi, Nagle, Person, Rödl, Schacht and Verstraëte. We use this result to show that the maximum number of edges in a $3$-uniform hypergraph on $n$ vertices containing no immersion of a closed surface is $n^{2+o(1)}$. Furthermore, we present results on the maximum number of edges in $k$-uniform linear hypergraphs containing no $r$-regular subhypergraph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源