论文标题
部分可观测时空混沌系统的无模型预测
We Are in This Together: Quantifying Community Subjective Wellbeing and Resilience
论文作者
论文摘要
19009年的大流行破坏了世界上每个人的生活。在这项工作中,我们表征了在疫苗可用性之前,在大流行期间,美国112个城市的主观福祉模式,如与城市相对应的子雷数所示。我们使用积极和负面影响来量化主观健康。然后,我们通过比较社区观察到的健康与预期的健康来衡量大流行的影响,如大流行前的时间序列模型所预测的那样。我们表明,语言反映的一般社区特征可以预测社区的韧性。我们预测大流行将如何基于正常时间的语言和相互作用\ textit {之前的语言和相互作用的特征影响每个社区的福祉。我们发现,具有相互作用特征的社区对应于更紧密的用户,并且更高的参与度受到显着影响。值得注意的是,我们发现更多谈论通常经验丰富的社会关系的社区,例如朋友,家人和隶属关系,实际上更有可能受到影响。此外,我们还使用相同的功能来预测大流行初次发作后每个社区将恢复的速度。我们同样发现,更多地谈论家庭,隶属关系和确定为团体一部分的社区的康复较慢。
The COVID-19 pandemic disrupted everyone's life across the world. In this work, we characterize the subjective wellbeing patterns of 112 cities across the United States during the pandemic prior to vaccine availability, as exhibited in subreddits corresponding to the cities. We quantify subjective wellbeing using positive and negative affect. We then measure the pandemic's impact by comparing a community's observed wellbeing with its expected wellbeing, as forecasted by time series models derived from prior to the pandemic.We show that general community traits reflected in language can be predictive of community resilience. We predict how the pandemic would impact the wellbeing of each community based on linguistic and interaction features from normal times \textit{before} the pandemic. We find that communities with interaction characteristics corresponding to more closely connected users and higher engagement were less likely to be significantly impacted. Notably, we find that communities that talked more about social ties normally experienced in-person, such as friends, family, and affiliations, were actually more likely to be impacted. Additionally, we use the same features to also predict how quickly each community would recover after the initial onset of the pandemic. We similarly find that communities that talked more about family, affiliations, and identifying as part of a group had a slower recovery.