论文标题

部分可观测时空混沌系统的无模型预测

Learning an Efficient Multimodal Depth Completion Model

论文作者

Hou, Dewang, Du, Yuanyuan, Zhao, Kai, Zhao, Yang

论文摘要

随着稀疏TOF传感器在移动设备中的广泛应用,RGB图像引导的稀疏深度完成最近引起了广泛的关注,但仍然面临一些问题。首先,多模式信息的融合需要更多的网络模块来处理不同的模态。但是稀疏TOF测量的应用方案通常需要轻巧的结构和低计算成本。其次,将稀疏和嘈杂的深度数据与密集像素的RGB数据融合可能会引入伪像。在本文中,提出了一个轻巧但有效的深度完成网络,该网络由两个分支的全球和局部深度预测模块和漏斗卷积的空间传播网络组成。两分支结构的提取和融合具有轻质骨架的跨模式特征。改进的空间传播模块可以逐渐完善完整的深度图。此外,针对深度完成问题提出了校正后的梯度损失。实验结果表明,所提出的方法可以胜过一些具有轻量级体系结构的最先进方法。提出的方法还赢得了MIPI2022 RGB+TOF深度完成挑战的冠军。

With the wide application of sparse ToF sensors in mobile devices, RGB image-guided sparse depth completion has attracted extensive attention recently, but still faces some problems. First, the fusion of multimodal information requires more network modules to process different modalities. But the application scenarios of sparse ToF measurements usually demand lightweight structure and low computational cost. Second, fusing sparse and noisy depth data with dense pixel-wise RGB data may introduce artifacts. In this paper, a light but efficient depth completion network is proposed, which consists of a two-branch global and local depth prediction module and a funnel convolutional spatial propagation network. The two-branch structure extracts and fuses cross-modal features with lightweight backbones. The improved spatial propagation module can refine the completed depth map gradually. Furthermore, corrected gradient loss is presented for the depth completion problem. Experimental results demonstrate the proposed method can outperform some state-of-the-art methods with a lightweight architecture. The proposed method also wins the championship in the MIPI2022 RGB+TOF depth completion challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源