论文标题

部分可观测时空混沌系统的无模型预测

Simultaneous transmission of hyper-entanglement in 3 degrees of freedom through a multicore fiber

论文作者

Achatz, Lukas, Bulla, Lukas, Ortega, Evelyn A., Bartokos, Michael, Ecker, Sebastian, Bohmann, Martin, Ursin, Rupert, Huber, Marcus

论文摘要

纠缠分布是大多数量子通信协议的核心。沿量子通道的不可避免的光子损失是长距离分发纠缠光子的主要障碍,因为无粘性定理禁止在古典通信中简单地放大信息。因此,对于每个成功传输的光子对携带尽可能多的纠缠是必需的。自发参数下转化(SPDC)会同时以多个高维自由度纠缠的光子,通常称为超键。在这项工作中,我们使用多核纤维(MCF)表明能量时和极化程度可以同时在多个纤维核中传播,甚至可以在整个核心上保持路径纠缠。我们在所有自由度上都验证了至少95美元$ \%$的理想铃铛状态的保真度。此外,由于纠缠的光子是用1560 nm的中心波长创建的,因此我们的方法很容易被整合到现代电信基础架构中,从而为高率量子键分布和许多其他基于纠缠的量子通信协议铺平了道路。

Entanglement distribution is at the heart of most quantum communication protocols. Inevitable loss of photons along quantum channels is a major obstacle for distributing entangled photons over long distances, as the no-cloning theorem forbids the information to simply be amplified along the way as is done in classical communication. It is therefore desirable for every successfully transmitted photon pair to carry as much entanglement as possible. Spontaneous parametric down-conversion (SPDC) creates photons entangled in multiple high-dimensional degrees of freedom simultaneously, often referred to as hyper-entanglement. In this work, we use a multicore fibre (MCF) to show that energy-time and polarization degrees of freedom can simultaneously be transmitted in multiple fibre cores, even maintaining path entanglement across the cores. We verify a fidelity to the ideal Bell state of at least 95$\%$ in all degrees of freedom. Furthermore, because the entangled photons are created with a center wavelength of 1560 nm, our approach can readily be integrated into modern telecommunication infrastructure, thus paving the way for high-rate quantum key distribution and many other entanglement-based quantum communication protocols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源