论文标题
使用GPU实时处理的空中成像声纳传感器网络
In-Air Imaging Sonar Sensor Network with Real-Time Processing Using GPUs
论文作者
论文摘要
对于自主导航和机器人应用,正确感知环境至关重要。存在许多用于此目的的感应方式。近年来,一种使用的方式是空中成像声纳。它在具有灰尘或雾之类的粗糙条件的复杂环境中是理想的选择。但是,就像大多数传感方式一样,要感知移动平台周围的完整环境,需要多个此类传感器来捕获完整的360度范围。当前,用于创建此数据的处理算法不足以以相当快的更新速率对多个传感器进行操作。此外,需要一个灵活而健壮的框架,以轻松地将多个成像声纳传感器实现到任何设置中,并为数据提供多种应用程序类型。在本文中,我们提出了一个专为这种新型传感方式而设计的传感器网络框架。此外,提出了图形处理单元上处理算法的实现,以便减少计算时间,以便以足够高的更新速率实时处理一个或多个成像声纳传感器。
For autonomous navigation and robotic applications, sensing the environment correctly is crucial. Many sensing modalities for this purpose exist. In recent years, one such modality that is being used is in-air imaging sonar. It is ideal in complex environments with rough conditions such as dust or fog. However, like with most sensing modalities, to sense the full environment around the mobile platform, multiple such sensors are needed to capture the full 360-degree range. Currently the processing algorithms used to create this data are insufficient to do so for multiple sensors at a reasonably fast update rate. Furthermore, a flexible and robust framework is needed to easily implement multiple imaging sonar sensors into any setup and serve multiple application types for the data. In this paper we present a sensor network framework designed for this novel sensing modality. Furthermore, an implementation of the processing algorithm on a Graphics Processing Unit is proposed to potentially decrease the computing time to allow for real-time processing of one or more imaging sonar sensors at a sufficiently high update rate.