论文标题
通过生成任务来增强用户行为序列建模,以进行会话搜索
Enhancing User Behavior Sequence Modeling by Generative Tasks for Session Search
论文作者
论文摘要
用户的搜索任务变得越来越复杂,需要与结果进行多个查询和互动。最近的研究表明,在会话中对历史用户行为进行建模可以帮助了解当前的搜索意图。现有的上下文感知排名模型主要编码当前会话序列(从第一个行为到当前查询),并使用高级表示形式计算排名得分。但是,当前会话序列(推断搜索意图的无用行为)通常会影响编码表示的质量。为了帮助当前用户行为序列的编码,我们建议使用解码器以及未来序列的信息和补充查询。具体来说,我们设计了三个生成任务,可以帮助编码器推断实际搜索意图:(1)预测未来的查询,(2)预测未来的单击文档,以及(3)预测补充查询。我们使用这些生成任务共同学习了使用编码器结构化方法来学习排名任务。在两个公共搜索日志上进行的广泛实验表明,我们的模型的表现优于所有现有基线,而设计的生成任务实际上可以帮助排名任务。此外,其他实验还表明,我们的方法可以轻松地应用于各种基于变压器的编码器模型并提高其性能。
Users' search tasks have become increasingly complicated, requiring multiple queries and interactions with the results. Recent studies have demonstrated that modeling the historical user behaviors in a session can help understand the current search intent. Existing context-aware ranking models primarily encode the current session sequence (from the first behavior to the current query) and compute the ranking score using the high-level representations. However, there is usually some noise in the current session sequence (useless behaviors for inferring the search intent) that may affect the quality of the encoded representations. To help the encoding of the current user behavior sequence, we propose to use a decoder and the information of future sequences and a supplemental query. Specifically, we design three generative tasks that can help the encoder to infer the actual search intent: (1) predicting future queries, (2) predicting future clicked documents, and (3) predicting a supplemental query. We jointly learn the ranking task with these generative tasks using an encoder-decoder structured approach. Extensive experiments on two public search logs demonstrate that our model outperforms all existing baselines, and the designed generative tasks can actually help the ranking task. Besides, additional experiments also show that our approach can be easily applied to various Transformer-based encoder-decoder models and improve their performance.