论文标题
HKZ减少晶格的正交性缺陷的新界限
A New Bound for the Orthogonality Defect of HKZ Reduced Lattices
论文作者
论文摘要
在这项工作中,我们确定了HKZ的正交性缺陷的急剧上限,将基础降低到尺寸$ 3 $。使用此结果,我们确定了HKZ降低任意等级基础的正交性缺陷的一般上限。这种上限似乎比文献中的现有界限都更加明显,例如Lagarias,Lenstra和Schnorr确定的界限。
In this work, we determine a sharp upper bound on the orthogonality defect of HKZ reduced bases up to dimension $3$. Using this result, we determine a general upper bound for the orthogonality defect of HKZ reduced bases of arbitrary rank. This upper bound seems to be sharper than existing bounds in literature, such as the one determined by Lagarias, Lenstra and Schnorr.