论文标题

抛物线型安德森模型的空间平均值的功能性中心限制定理,Delta初始条件$ d \ geq 1 $

Functional central limit theorems for spatial averages of the parabolic Anderson model with delta initial condition in dimension $d\geq 1$

论文作者

Zhang, Wanying, Zhang, Yong, Li, Jingyu

论文摘要

令$ \ { $ f $。令$ s_ {n,t}:= n^{ - d} \ int _ {{[[0,n]}^d} {[u(t,x)-1]} {\ rm d} x $表示$ {{\ Mathb r}^d} d} $ on $ {{\ rm d} $表示空间平均值。我们根据$ f $和空间尺寸$ d $的定量分析获得了各种空间平均值的功能中心限制定理(CLT)。特别是,当$ f $由riesz kernel给出时,即$ f({\ rm x})= {\ vert x \ vert}^{ - β} { - β} {\ rm d} x $,$β\ in(in(0,2 \ wedge d)$,该功能clt也基于索引。

Let $\{u(t,x)\}_{t>0,x\in{{\mathbb R}^{d}}}$ denote the solution to a $d$-dimensional parabolic Anderson model with delta initial condition and driven by a multiplicative noise that is white in time and has a spatially homogeneous covariance given by a nonnegative-definite measure $f$. Let $S_{N,t}:=N^{-d}\int_{{[0,N]}^d}{[U(t,x)-1]}{\rm d}x$ denote the spatial average on ${{\mathbb R}^{d}}$. We obtain various functional central limit theorems (CLTs) for spatial averages based on the quantitative analysis of $f$ and spatial dimension $d$. In particular, when $f$ is given by Riesz kernel, that is, $f({\rm x})={\Vert x \Vert}^{-β}{\rm d}x$, $β\in(0,2\wedge d)$, the functional CLT is also based on the index $β$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源