论文标题

DCSF:对异步时间序列分类的深卷积集功能

DCSF: Deep Convolutional Set Functions for Classification of Asynchronous Time Series

论文作者

Yalavarthi, Vijaya Krishna, Burchert, Johannes, Schmidt-Thieme, Lars

论文摘要

异步时间序列是一个多元时间序列,在该时间序列中,所有通道都被观察到异步独立的,使得时间序列在对齐时极为稀疏。我们经常在具有复杂的观察过程(例如医疗保健,气候科学和天文学)的应用中观察到这种影响,仅举几例。由于异步性质,它们对深度学习体系结构构成了重大挑战,该体系结构假定给他们的时间序列定期采样,完全观察并与时间对齐。本文提出了一个新颖的框架,我们称之为深卷积集功能(DCSF),该功能高度可扩展且有效,对于异步时间序列分类任务。随着深度学习体系结构的最新进展,我们引入了一个模型,该模型不变了,在该阶段介绍了时间序列的频道。我们探索卷积神经网络,该网络对定期采样和完全观察到的时间序列的紧密相关的问题分类进行了很好的研究,以编码设定元素。我们评估DCSF的ASTS分类和在线(每个时间点)ASTS分类。我们在多个现实世界和合成数据集上进行的广泛实验验证了建议的模型在准确性和运行时间方面的表现优于一系列最新模型。

Asynchronous Time Series is a multivariate time series where all the channels are observed asynchronously-independently, making the time series extremely sparse when aligning them. We often observe this effect in applications with complex observation processes, such as health care, climate science, and astronomy, to name a few. Because of the asynchronous nature, they pose a significant challenge to deep learning architectures, which presume that the time series presented to them are regularly sampled, fully observed, and aligned with respect to time. This paper proposes a novel framework, that we call Deep Convolutional Set Functions (DCSF), which is highly scalable and memory efficient, for the asynchronous time series classification task. With the recent advancements in deep set learning architectures, we introduce a model that is invariant to the order in which time series' channels are presented to it. We explore convolutional neural networks, which are well researched for the closely related problem-classification of regularly sampled and fully observed time series, for encoding the set elements. We evaluate DCSF for AsTS classification, and online (per time point) AsTS classification. Our extensive experiments on multiple real-world and synthetic datasets verify that the suggested model performs substantially better than a range of state-of-the-art models in terms of accuracy and run time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源