论文标题

基于事件的图像具有动态运动意识

Event-based Image Deblurring with Dynamic Motion Awareness

论文作者

Vitoria, Patricia, Georgoulis, Stamatios, Tulyakov, Stepan, Bochicchio, Alfredo, Erbach, Julius, Li, Yuanyou

论文摘要

由于模糊图像本身缺乏时间和纹理信息,因此非均匀的图像脱毛是一项具有挑战性的任务。来自辅助传感器的互补信息正在探索这些事件传感器以解决这些限制。后者可以异步记录对数强度的变化,称为事件,具有高时间分辨率和高动态范围。当前的基于事件的脱毛方法将模糊图像与事件结合在一起,以共同估计每个像素运动和DeBlur操作员。在本文中,我们认为一种分裂和争议的方法更适合此任务。为此,我们建议使用调制可变形的卷积,从事件中,动态估算其内核偏移量和调制面具以编码场景中的运动,而从模糊图像和相应事件的组合中学到了deblur操作员。此外,我们采用一种粗到精细的多尺度重建方法来应对低对比度区域中事件的固有稀疏性。重要的是,我们介绍了第一个数据集,其中包含对曝光时间内的真实RGB模糊图像和相关事件的对。我们的结果在使用事件时显示出更好的总体鲁棒性,在合成数据上最多改进了PSNR,而对真实事件数据的提高了1.57DB。

Non-uniform image deblurring is a challenging task due to the lack of temporal and textural information in the blurry image itself. Complementary information from auxiliary sensors such event sensors are being explored to address these limitations. The latter can record changes in a logarithmic intensity asynchronously, called events, with high temporal resolution and high dynamic range. Current event-based deblurring methods combine the blurry image with events to jointly estimate per-pixel motion and the deblur operator. In this paper, we argue that a divide-and-conquer approach is more suitable for this task. To this end, we propose to use modulated deformable convolutions, whose kernel offsets and modulation masks are dynamically estimated from events to encode the motion in the scene, while the deblur operator is learned from the combination of blurry image and corresponding events. Furthermore, we employ a coarse-to-fine multi-scale reconstruction approach to cope with the inherent sparsity of events in low contrast regions. Importantly, we introduce the first dataset containing pairs of real RGB blur images and related events during the exposure time. Our results show better overall robustness when using events, with improvements in PSNR by up to 1.57dB on synthetic data and 1.08 dB on real event data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源