论文标题
QPU系统共同设计用于量子HPC加速器
QPU-System Co-Design for Quantum HPC Accelerators
论文作者
论文摘要
量子处理单元(QPU)的使用有望迅速解决计算问题,但是当前可用的量子设备仅具有非常有限的Qubits,并且遭受了相当大的缺陷。朝实际实用程序进行进步的一种可能性是使用共同设计方法:问题制定和算法,但物理QPU属性也针对特定应用程序量身定制。由于QPU可能被用作古典计算机的加速器,因此将系统集成到现有架构中的详细信息是影响和改善QPU的实际实用性的另一个杠杆。 在这项工作中,我们研究了不同参数对量子程序运行时的影响,对定制的混合CPU-QPU系统。我们研究CPU和QPU之间的通信时间的影响,适应QPU设计如何影响量子和整体执行绩效以及这些因素如何相互作用。使用一个简单的模型,该模型允许估算哪些设计选择应对给定任务进行优化,我们为HPC社区提供了有关共同设计方法的潜在和局限性的直觉。我们还讨论了实施实际量子硬件设备上提出的更改的物理限制。
The use of quantum processing units (QPUs) promises speed-ups for solving computational problems, but the quantum devices currently available possess only a very limited number of qubits and suffer from considerable imperfections. One possibility to progress towards practical utility is to use a co-design approach: Problem formulation and algorithm, but also the physical QPU properties are tailored to the specific application. Since QPUs will likely be used as accelerators for classical computers, details of systemic integration into existing architectures are another lever to influence and improve the practical utility of QPUs. In this work, we investigate the influence of different parameters on the runtime of quantum programs on tailored hybrid CPU-QPU-systems. We study the influence of communication times between CPU and QPU, how adapting QPU designs influences quantum and overall execution performance, and how these factors interact. Using a simple model that allows for estimating which design choices should be subjected to optimisation for a given task, we provide an intuition to the HPC community on potentials and limitations of co-design approaches. We also discuss physical limitations for implementing the proposed changes on real quantum hardware devices.