论文标题
从静态液体池升起的轴对称弯月面的形状
On the shape of an axisymmetric meniscus rising from a static liquid pool
论文作者
论文摘要
我们检查了静态液体界面的高度的经典问题,该问题在暴露于空气的无界停滞池中形成的固体垂直圆柱体外部形成。引力和表面张力效应竞争以影响界面形状,其特征是债券编号,$ b =ρgr^{2}/σ$,其中$ρ$是流体密度,$ g $是引力常数,$ r $是圆柱体的半径,$σ$是表面张力。在这里,我们为界面形状提供了收敛的功率系列解决方案,该界面形状是键号的函数上升到水平池上方的。功率系列解决方案是根据与较大距离渐近行为相匹配的前因子(零秩序的修改贝塞尔函数)以及将收敛限制奇异性从物理领域移出的影响的欧拉转换的表达。功率系列解决方案通过与数值解的比较来验证,$ b \ rightarrow0 $匹配LO的渐近解决方案(1983,J。FluidMech。,132,p.65-78)。对于$ 45 $度的基准静态接触角,功率系列方法超过了$ b> 0.01 $的渐近解决方案的准确性; $ b $的下限是由以双精度算术计算串联系数的圆形误差产生的,并且随着接触角的增加而减小。
We examine the classical problem of the height of a static liquid interface that forms on the outside of a solid vertical cylinder in an unbounded stagnant pool exposed to air. Gravitational and surface tension effects compete to affect the interface shape as characterized by the Bond number, $B = ρg R^{2}/σ$, where $ρ$ is fluid density, $g$ is the gravitational constant, $R$ is the radius of the cylinder, and $σ$ is surface tension. Here, we provide a convergent power series solution for interface shapes that rise above the horizontal pool as a function of Bond number. The power series solution is expressed in terms of a pre-factor that matches the large distance asymptotic behavior -- the modified Bessel function of zeroth order -- and an Euler transformation that moves the influence of convergence-limiting singularities out of the physical domain. The power series solution is validated through comparison with a numerical solution, and the $B\rightarrow0$ matched asymptotic solutions of Lo (1983, J. Fluid Mech., 132, p.65-78). For a benchmark static contact angle of $45$ degrees, the power series approach exceeds the accuracy of matched asymptotic solutions for $B>0.01$; this lower limit on $B$ arises from round-off error in the computation of the series coefficients in double precision arithmetic, and is reduced as the contact angle is increased.