论文标题
涡旋固定在中子星,滑动动力学和旋转故障的起源
Vortex Pinning in Neutron Stars, Slip-stick Dynamics, and the Origin of Spin Glitches
论文作者
论文摘要
我们使用三维动力学模拟研究了中子恒星内皮中超流体涡旋的固定和固定。对于理想化的,以身体为中心的立方晶格的某些晶格方向,发生了强钉,并且通常发生在无定形或不纯净的核晶格中。每单位长度的固定力为$ \ sim 10^{16} $ dyn cm $^{ - 1} $,用于令人反感的Vortex-Nucleus交互,以及$ \ sim 10^{17} $ dyn cm $^{ - 1} $用于有吸引力的交互。固定力足以说明观察到的自旋跳动(故障)。涡流通过晶格移动,带有滑动的角色;对于一系列的超流质速度,涡流可以处于寒冷,固定的状态或热的未添加状态,在涡旋上对开尔文波的强烈激发。涡旋运动的这种两态性质为大规模涡流运动奠定了基础,从而产生了可观察到的自旋故障。我们认为,由于反复的未加工和翻新,涡流阵列可能会纠结。我们猜想,在小故障中,开尔文波激发沿平均超流体涡度的方向迅速扩散,并且沿垂直于其的方向慢慢,类似于各向异性偏移。
We study pinning and unpinning of superfluid vortices in the inner crust of a neutron star using 3-dimensional dynamical simulations. Strong pinning occurs for certain lattice orientations of an idealized, body-centered cubic lattice, and occurs generally in an amorphous or impure nuclear lattice. The pinning force per unit length is $\sim 10^{16}$ dyn cm$^{-1}$ for a vortex-nucleus interaction that is repulsive, and $\sim 10^{17}$ dyn cm$^{-1}$ for an attractive interaction. The pinning force is strong enough to account for observed spin jumps (glitches). Vortices forced through the lattice move with a slip-stick character; for a range of superfluid velocities, the vortex can be in either a cold, pinned state or a hot unpinned state, with strong excitation of Kelvin waves on the vortex. This two-state nature of vortex motion sets the stage for large-scale vortex movement that creates an observable spin glitch. We argue that the vortex array is likely to become tangled as a result of repeated unpinnings and repinnings. We conjecture that during a glitch, the Kelvin-wave excitation spreads rapidly along the direction of the mean superfluid vorticity and slower in the direction perpendicular to it, akin to an anisotropic deflagration.