论文标题

部分可观测时空混沌系统的无模型预测

Sliding Window Recurrent Network for Efficient Video Super-Resolution

论文作者

Lian, Wenyi, Lian, Wenjing

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Video super-resolution (VSR) is the task of restoring high-resolution frames from a sequence of low-resolution inputs. Different from single image super-resolution, VSR can utilize frames' temporal information to reconstruct results with more details. Recently, with the rapid development of convolution neural networks (CNN), the VSR task has drawn increasing attention and many CNN-based methods have achieved remarkable results. However, only a few VSR approaches can be applied to real-world mobile devices due to the computational resources and runtime limitations. In this paper, we propose a \textit{Sliding Window based Recurrent Network} (SWRN) which can be real-time inference while still achieving superior performance. Specifically, we notice that video frames should have both spatial and temporal relations that can help to recover details, and the key point is how to extract and aggregate information. Address it, we input three neighboring frames and utilize a hidden state to recurrently store and update the important temporal information. Our experiment on REDS dataset shows that the proposed method can be well adapted to mobile devices and produce visually pleasant results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源