论文标题

解码测量准备的量子阶段和过渡:从ISING模型到衡量理论,及以后

Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising model to gauge theory, and beyond

论文作者

Lee, Jong Yeon, Ji, Wenjie, Bi, Zhen, Fisher, Matthew P. A.

论文摘要

测量值可以有效制备具有远程纠缠的有趣量子多体状态,并基于测量结果的其他转换为条件。在这里,我们证明,可以通过在$ d \ geq2 $中的群集状态下对群集状态进行一般单位测量来获得所谓的共形量子临界点(CQCP)。上述状态的平等相关因子通过在有限温度下的某些$ d $二维经典模型的相关函数描述,并具有空间保形不变性。这建立了一系列临界自旋模型的临界临界状态和共形场理论之间的确切对应关系,包括熟悉的ISING模型和规格理论。此外,通过将测得的量子状态的远程纠缠结构映射到相应的热自旋模型的相关性中,我们严格地建立了与理想环境偏离的测量量量子状态中远程纠缠的稳定性条件。最重要的是,我们描述了未经选择后解码所得量子相和过渡的方案,从而将指数测量复杂性转移到多项式经典计算中。因此,我们的发现提出了一种新的机制,其中出现了量子临界波功能,提供了研究量子阶段和保形量子临界点的新实用方法。

Measurements allow efficient preparation of interesting quantum many-body states with long-range entanglement, conditioned on additional transformations based on measurement outcomes. Here, we demonstrate that the so-called conformal quantum critical points (CQCP) can be obtained by performing general single-site measurements in an appropriate basis on the cluster states in $d\geq2$. The equal-time correlators of the said states are described by correlation functions of certain $d$-dimensional classical models at finite temperatures and feature spatial conformal invariance. This establishes an exact correspondence between the measurement-prepared critical states and conformal field theories of a range of critical spin models, including familiar Ising models and gauge theories. Furthermore, by mapping the long-range entanglement structure of measured quantum states into the correlations of the corresponding thermal spin model, we rigorously establish the stability condition of the long-range entanglement in the measurement-prepared quantum states deviating from the ideal setting. Most importantly, we describe protocols to decode the resulting quantum phases and transitions without post-selection, thus transferring the exponential measurement complexity to a polynomial classical computation. Therefore, our findings suggest a novel mechanism in which a quantum critical wavefunction emerges, providing new practical ways to study quantum phases and conformal quantum critical points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源