论文标题

分子团块和核心的病毒平衡在碰撞磁化流中

The Virial Balance of Molecular Clumps and Cores in Colliding Magnetized Flows

论文作者

Weis, Michael, Walch, Stefanie, Seifried, Daniel, Ganguly, Shashwata

论文摘要

我们模拟了与自适应网状改进代码{\ sc flash}相撞的中性介质的碰撞流中的分子云的形成。我们包括一个化学网络来处理加热和冷却,并遵循分子气的形成。对于在四个不同的模拟中形成的分子团块和核心,其初始磁场强度在0.01-5 $ \,μ$ G之间,我们进行了完整的病毒分析,包括所有独立的表面和体积项以及时间依赖性项。初始磁场强度会影响形成云的碎片特性,因为它禁止垂直于田间方向的运动,因此甚至改变甚至抑制了丝状亚结构的形成。无论如何,都会发生分子团块和核心形成。结果,随着场强的增加,我们发现了更多平均质量较小的片段。然而,初始场强在动态上与构成我们分子团块和核的片段无关。 %然而,对于构成我们分子团块和核的片段,磁场总体上可以忽略不计。分子团块大部分是未结合的,可能是瞬态的物体,似乎被RAM压力或热压限制,表明它们被湍流所扫除。他们在质量通量中通过其表面经历了显着波动,这表明欧拉参考框架由于其定义不明的性质而导致了主要的时间依赖性术语。我们将核心定义为包含分子气体,该分子气体还具有高度屏蔽。大多数核心在引力 - 运动均衡中,并且已经用常见的病毒参数$α_\ mathrm {vir} $很好地描述(从海耶尔关系可以看出),而某些人会通过动力学表面效应进行较小的分散体。

We simulate the formation of molecular clouds in colliding flows of warm neutral medium with the adaptive mesh refinement code {\sc Flash}. We include a chemical network to treat heating and cooling and to follow the formation of molecular gas. For the forming molecular clumps and cores in four different simulations with varying initial magnetic field strength between 0.01 - 5$\,μ$G, we carry out a full virial analysis including all time-independent surface and volume terms as well as the time-dependent term. The initial magnetic field strength influences the fragmentation properties of the forming cloud because it prohibits motions perpendicular to the field direction and hence alters, or even suppresses, the formation of filamentary substructures. Molecular clump and core formation occurs anyhow. As a result, with increasing field strength, we find more fragments with a smaller average mass; yet the initial field strength is dynamically not relevant for the fragments which constitute our molecular clumps and cores. %yet the magnetic field overall is dynamically negligible for the fragments which constitute our molecular clumps and cores. The molecular clumps are mostly unbound, probably transient objects, which seem to be weakly confined by ram pressure or thermal pressure, indicating that they are swept up by the turbulent flow. They experience significant fluctuations in the mass flux through their surface, indicating that the Eulerian reference frame gives rise to a dominant time-dependent term due to their ill-defined nature. We define the cores to encompass molecular gas, which is additionally highly shielded. Most cores are in gravitational-kinetic equipartition and are already well described by the common virial parameter $α_\mathrm{vir}$ (as can be seen from the Heyer relation), while some undergo minor dispersion by kinetic surface effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源