论文标题
引导线路缺陷,$ O(2)$全局对称性
Bootstrapping line defects with $O(2)$ global symmetry
论文作者
论文摘要
我们使用数值引导程序研究$ O(2)$全局对称性的保形线缺陷。我们的结果非常笼统,特别是捕获的,尤其是源自具有连续全局对称性的块状CFT的保形线缺陷,可以通过缺陷的存在来保留或部分破坏。我们从不可知论的方法开始,然后对两个规范操作员之间的相关功能进行系统的自举研究:位移和倾斜。然后,我们专注于两种有趣的理论:单型线缺陷和局部磁场线缺陷。为此,我们将数字引导程序与$ \ varepsilon $ - expansion结合在一起,在此我们将文献中现有的结果与其他计算进行补充。对于单肌缺陷,我们的数值结果与预期一致,已知的分析解决方案位于我们的数值范围内。对于局部磁场线缺陷,我们的地块显示了一系列有趣的尖端,我们探索了这些尖端。
We use the numerical bootstrap to study conformal line defects with $O(2)$ global symmetry. Our results are very general and capture in particular conformal line defects originating from bulk CFTs with a continuous global symmetry, which can either be preserved or partially broken by the presence of the defect. We begin with an agnostic approach and perform a systematic bootstrap study of correlation functions between two canonical operators on the defect: the displacement and the tilt. We then focus on two interesting theories: a monodromy line defect and a localized magnetic field line defect. To this end, we combine the numerical bootstrap with the $\varepsilon$-expansion, where we complement existing results in the literature with additional calculations. For the monodromy defect our numerical results are consistent with expectations, with known analytic solutions sitting inside our numerical bounds. For the localized magnetic field line defect our plots show a series of intriguing cusps which we explore.