论文标题
纤维素/石墨烯界面的纳米级结构和电子特性
Nanoscale Structural and Electronic Properties of Cellulose/Graphene Interfaces
论文作者
论文摘要
基于(Nano)纤维素平台功能化的电子设备的开发依赖于对组合系统的结构和电子特性,纤维素/功能元件的原子理解。在这项工作中,我们介绍了基于第一原理计算的纳米纤维素/石墨烯界面(NCL/G)的理论研究。我们发现,疏水/g(ncl $^{\ rm phob} $/g)和Hydophilic/g(ncl $^{\ rm phil} $/g)界面的结合能主要由van der waals交互作用,并且与其2D界面互动相当。我们验证了通过通过隐式溶剂化模型纳入水性培养基的NCl $^{\ rm phob} $/g的充满活力的偏好。使用一组碳K-EDGE X射线吸收光谱的模拟进行了进一步的结构表征,以识别和区分Ncl $^{\ rm Phob} $/g和NCl $^{\ rm Phil} $/G ncl} $/g接口。电子结构的计算表明,石墨烯的线性能带位于NCL,薄板的带间隙中,而观察到耗尽/累积电荷密度区域。我们表明,外部试剂,即电场和机械应变,可以调节狄拉克锥的可调性和界面处的电荷密度。 NCL/G中狄拉克锥状态的控制/维护是基于纤维素平台开发电子设备的重要特征。
The development of electronic devices based on the functionalization of (nano)cellulose platforms relies upon an atomistic understanding of the structural, and electronic properties of the combined system, cellulose/functional element. In this work, we present a theoretical study of the nanocellulose/graphene interface (nCL/G) based on first-principles calculations. We find that the binding energies of both hydrophobic/G (nCL$^{\rm phob}$/G) and hydrophilic/G (nCL$^{\rm phil}$/G) interfaces are primarily dictated by the van der Waals interactions, and are comparable with that of their 2D interface counterparts. We verify that the energetic preference of nCL$^{\rm phob}$/G has been reinforced by the inclusion of an aqueous media via the implicit solvation model. Further structural characterization was carried out using a set of simulations of Carbon K-edge X-ray absorption spectra to identify and distinguish the key absorption features of the nCL$^{\rm phob}$/G and nCL$^{\rm phil}$/G interfaces. The electronic structure calculations reveal that the linear energy bands of graphene lie in the band gap of the nCL, sheet, while depletion/accumulation charge density regions are observed. We show that external agents, i.e. electric field and mechanical strain, allow for tunability of the Dirac cone and the charge density at the interface. The control/maintenance of the Dirac cone states in nCL/G is an important feature for the development of electronic devices based on cellulosic platforms.