论文标题

可变lebesgue空间上的ε-最大运算符和HAAR乘数

The ε-Maximal Operator and Haar Multipliers on Variable Lebesgue Spaces

论文作者

Cruz-Uribe, David, Penrod, Michael

论文摘要

C. Stockdale,P。Villarroya和B. Wick介绍了$ε$ - 毫米运算符,以证明HAAR乘数在加权空间$ l^p(w)$上,用于大于$ a_p $的一类。我们证明$ε$ -maximal运算符和HAAR乘数在可变的Lebesgue Spaces $ \ lpp(\ r^n)$上限制在更大的指数函数中,而不是使用log-holder连续功能,用于证明最大运算符在$ \ lpp(\ r^n)上的最大操作员的界限。我们还证明,当仅限于二元立方体$ q_0 $时,HAAR乘数是紧凑的。

C. Stockdale, P. Villarroya, and B. Wick introduced the $ε$-maximal operator to prove the Haar multiplier is bounded on the weighted spaces $L^p(w)$ for a class of weights larger than $A_p$. We prove the $ε$-maximal operator and Haar multiplier are bounded on variable Lebesgue spaces $\Lpp(\R^n)$ for a larger collection of exponent functions than the log-Holder continuous functions used to prove the boundedness of the maximal operator on $\Lpp(\R^n)$. We also prove that the Haar multiplier is compact when restricted to a dyadic cube $Q_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源