论文标题
骨架原型对比度学习,具有无监督的人的多层图关系建模
Skeleton Prototype Contrastive Learning with Multi-Level Graph Relation Modeling for Unsupervised Person Re-Identification
论文作者
论文摘要
通过3D骨骼重新识别(重新识别)是一个重要的新兴话题,具有许多优点。现有的解决方案很少探索骨骼结构或运动中有价值的身体成分关系,并且它们通常缺乏通过未标记的骨骼数据来学习一般表示的能力。本文提出了一种通用的无监督骨骼原型对比度学习范式,并具有多级图关系学习(SPC-MGR),以从无标记的骨骼中学习有效的表示,以执行人员重新进行。具体而言,我们首先构建统一的多级骨架图,以完全模拟骨骼内的身体结构。然后,我们提出了一个多头结构关系层,以全面捕获图形中物理连接的身体成分节点的关系。利用全层协作关系层来推断与运动相关的身体部位之间的协作,以捕获丰富的身体特征和可识别的步行模式。最后,我们提出了一个骨架原型对比学习方案,该方案具有未标记的图表表示的相关实例,并将其固有的相似性与代表性骨骼特征(“骨架原型”)进行了对比,以学习人重新ID的歧视性骨骼表示。经验评估表明,SPC-MGR的表现明显优于几种基于最先进的骨架方法,并且还可以实现竞争激烈的人重新绩效,以实现更一般的情况。
Person re-identification (re-ID) via 3D skeletons is an important emerging topic with many merits. Existing solutions rarely explore valuable body-component relations in skeletal structure or motion, and they typically lack the ability to learn general representations with unlabeled skeleton data for person re-ID. This paper proposes a generic unsupervised Skeleton Prototype Contrastive learning paradigm with Multi-level Graph Relation learning (SPC-MGR) to learn effective representations from unlabeled skeletons to perform person re-ID. Specifically, we first construct unified multi-level skeleton graphs to fully model body structure within skeletons. Then we propose a multi-head structural relation layer to comprehensively capture relations of physically-connected body-component nodes in graphs. A full-level collaborative relation layer is exploited to infer collaboration between motion-related body parts at various levels, so as to capture rich body features and recognizable walking patterns. Lastly, we propose a skeleton prototype contrastive learning scheme that clusters feature-correlative instances of unlabeled graph representations and contrasts their inherent similarity with representative skeleton features ("skeleton prototypes") to learn discriminative skeleton representations for person re-ID. Empirical evaluations show that SPC-MGR significantly outperforms several state-of-the-art skeleton-based methods, and it also achieves highly competitive person re-ID performance for more general scenarios.