论文标题

类似于bloch型空间之间的类似cesàro的操作员

Cesàro-like operator acting between Bloch type spaces

论文作者

Tang, Pengcheng, Zhang, Xuejun

论文摘要

令$μ$为间隔$ [0,1)$和$ f(z)= \ sum_ {n = 0}^{\ infty} a_ {n} z^{n} \ in H(\ mathbb {d})$的有限正borel度量。类似CeàSro的操作员由$$ \ MATHCAL {C}_μ(f)(z)= \ sum^\ infty_ {n = 0}μ_n\ left(\ sum^n_ {k = 0} a_k \ \ right) $μ_n$表示度量$μ$的$ n $ them-them-them_n = \ int _ {[0,1)} t^{n}dμ(t)$。在本文中,我们将$ \ Mathcal {c}_μ$的$μ$表征为$μ$,从一个bloch型空间界(紧凑),$ \ nathcal {b}^α$,将其变成另一个,$ \ nathcal {b}^β$。

Let $μ$ be a finite positive Borel measure on the interval $[0,1)$ and $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n} \in H(\mathbb{D})$. The Ceàsro-like operator is defined by $$ \mathcal{C}_μ(f)(z)=\sum^\infty_{n=0}μ_n\left(\sum^n_{k=0}a_k\right)z^n, \ z\in \mathbb{D}, $$ where, for $n\geq 0$, $μ_n$ denotes the $n$-th moment of the measure $μ$, that is, $μ_n=\int_{[0, 1)} t^{n}dμ(t)$. In this paper, we characterize the measures $μ$ for which $\mathcal{C}_μ$ is bounded (compact) from one Bloch type space, $\mathcal {B}^α$, into another one, $\mathcal {B}^β$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源